

Funded by the
European Union

PROCEEDINGS

TwinSubDyn Summer School

on Sustainable organic amendment applications from a soil
and ground water management perspective

-learning, training, and knowledge exchange activity-

02-06. June 2025, Novi Sad, Serbia

MARTIN-LUTHER-UNIVERSITÄT
HALLE-WITTENBERG

CSIC

CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

JÜLICH
Forschungszentrum

universität
wien

TwinSubDyn

CIP - Каталогизација у публикацији
Библиотеке Матице српске, Нови Сад

631.4(048.3)
628.112(048.3)

TWINSUBDYN Summer School on Sustainable Organic Amendment Applications from a Soil and Ground Water Management Perspective (2025 ; Novi Sad)

Proceedings [Elektronski izvor] / TwinSubDyn Summer School on Sustainable Organic Amendment Applications from a Soil and Ground Water Management Perspective - Learning, Training, and Knowledge Exchange Activity, 2-6. June 2025, Novi Sad, Serbia ; [editors Srđan Rončević ... [et al.]. - Novi Sad : Faculty of Sciences, 2025

Način pristupa (URL): <https://twinsubdyn.pmf.uns.ac.rs/>. - Opis zasnovan na stanju na dan 19.6.2025. - Registar.

ISBN 978-86-7031-718-5

a) Земљиште -- Апстракти б) Подземне воде -- Апстракти

COBISS.SR-ID 170986761

Proceedings Summer School on Sustainable organic amendment applications from a soil and ground water management perspective - learning, training, and knowledge exchange activity

Organizer Project TwinSubDyn: Twinning excellence on organic soil amendments effect on nutrient and contaminant dynamics in the subsurface (GA Number: 101059546)

Date 2-6. June 2025

Venue Matica srpska, Matice srpske 1, 21000 Novi Sad, Serbia

Published by University of Novi Sad, Faculty of Sciences (e-publication)

Available at the web address: <https://twinsubdyn.pmf.uns.ac.rs/>

Editors Prof. Dr. Srđan Rončević, University of Novi Sad, Faculty of Sciences
Prof. Dr. Snežana Maletić, University of Novi Sad, Faculty of Sciences
Dr. Tamara Apostolović, University of Novi Sad, Faculty of Sciences
Dr. Marko Šolić, University of Novi Sad, Faculty of Sciences
Dr. Irina Jevrosimov, University of Novi Sad, Faculty of Sciences

ISBN 978-86-7031-718-5

All the scientific content within this e-publication is licensed under the terms of the Creative Commons Attribution 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. Author(s) retain copyright and may enter into the separate, additional contractual arrangements for non-exclusive distribution of their work.

Acknowledgments

Project partners

University of Novi Sad Faculty of Sciences, Serbia

MARTIN-LUTHER-UNIVERSITÄT
HALLE-WITTENBERG

Martin-Luther-Universität Halle-Wittenberg, Germany

Forschungszentrum Jülich, Germany

Spanish National Research Council, Spain

universität
wien

University of Vienna, Austria

Funding

Funded by
the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Research Executive Agency (REA). Neither the European Union nor the granting authority can be held responsible for them. Grant agreement No. 101059546.

Travel grants for Summer School participants were generously funded by the European Geosciences Union (EGU).

Scientific and Program Committee / Reviewers

1. **Snežana Maletić** – University of Novi Sad Faculty of Sciences (president)
2. **Srđan Rončević** – University of Novi Sad Faculty of Sciences (member)
3. **Jasmina Agbaba** – University of Novi Sad Faculty of Sciences (member)
4. **Marijana Kragulj Isakovski** – University of Novi Sad Faculty of Sciences, (member)
6. **Jelena Beljin** – University of Novi Sad Faculty of Sciences
7. **Bruno Glaser** – Martin-Luther-Universität Halle-Wittenberg (member)
8. **Roland Bol** – Forschungszentrum Jülich (member)
9. **Lutz Weihermüller** – Forschungszentrum Jülich (member)
10. **Heike Knicker** – Spanish National Research Council (member)
11. **Thilo Hofmann** – University of Vienna (member)
12. **Thorsten Hüffer** – University of Vienna (member)
13. **Gabriel Sigmund** – Wageningen University (member)
14. **Tamara Apostolović** – University of Novi Sad Faculty of Sciences (member)
15. **Marko Šolić** – University of Novi Sad Faculty of Sciences (member)
16. **Arthur Gross** – Martin-Luther-Universität Halle-Wittenberg (member)
17. **Álvaro Fernando García Rodriguez** – Spanish National Research Council (member)

Organizing Committee

1. **Marijana Kragulj Isakovski** – University of Novi Sad Faculty of Sciences
2. **Aleksandra Tubić** – University of Novi Sad Faculty of Sciences
3. **Jelena Beljin** – University of Novi Sad Faculty of Sciences
4. **Jelena Molnar Jazić** – University of Novi Sad Faculty of Sciences
5. **Nina Đukanović** – University of Novi Sad Faculty of Sciences
6. **Tamara Apostolović** – University of Novi Sad Faculty of Sciences
7. **Marko Šolić** – University of Novi Sad Faculty of Sciences
8. **Slaven Tenodi** – University of Novi Sad Faculty of Sciences
9. **Irina Jevrosimov** – University of Novi Sad Faculty of Sciences
10. **Sanja Vasiljević** – University of Novi Sad Faculty of Sciences
11. **Gordana Vlahović** – University of Novi Sad Faculty of Sciences
12. **Ivana Pejović** – University of Novi Sad Faculty of Sciences
13. **Arthur Gross** – Martin-Luther-Universität Halle-Wittenberg
14. **Álvaro Fernando García Rodriguez** – Spanish National Research Council
15. **Jens Kruse** – Forschungszentrum Jülich

THE INFLUENCE OF PYROLYSIS TEMPERATURE ON THE PROPERTIES OF BIOCHAR DERIVED FROM WHEAT STRAW

Nina Đukanović¹, **Tamara Apostolović¹**, **Jasmina Anočić¹**, **Sanja Mutić¹**, **Tijana Marjanović Srebro¹**, **Snežana Maletić¹**, **Jelena Beljin¹**

¹Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia, [*nina.djukanovic@dh.uns.ac.rs](mailto:nina.djukanovic@dh.uns.ac.rs)

Biochar, as a carbon-rich material, can be obtained from various organic feedstocks using slow pyrolysis, a thermal decomposition process that occurs in the absence of oxygen. The type of biomass, temperature, and retention time significantly affect the physicochemical and structural properties of biochar. Due to its diverse properties, biochar is a material with potential for environmental applications. This work aimed to examine the effect of pyrolysis temperature on the properties of biochars obtained by pyrolysis of wheat straw at temperatures of 400°C and 700°C for 1 h in an inert atmosphere. The biochars are labeled as WS400 and WS700. For the characterization of the biochars, Brunauer-Emmett-Teller method (BET), X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were performed. SEM images show that WS700 has significantly more cracks and deep, wide pores of small size, with almost completely degraded fibers compared to WS400. SEM results were confirmed by the specific surface area (SSA) obtained by BET analysis, as SSA increased from 3.68 m²g⁻¹ for WS400 to 80.88 m²g⁻¹ for WS700. The elemental composition of the produced biochars, determined by EDS in combination with CHNS analysis, shows that in both biochars the carbon content was significantly high compared to the other elements (about 66%), while the second major element was oxygen (6.5-8.5%), and all other elements in the biochars contained mostly less than 1%. The total weight loss during TGA was about 89% for WS400 and about 82% for WS700, with the highest thermal degradation observed between 300 and 500 °C. XRD analysis resulted in similar diffraction patterns for both biochars. One broad peak was observed in the band with a peak at around 2θ=23°, indicating the presence of graphitic carbon planes (002). Two sharp peaks were observed for both biochars at around 2θ=29°, indicating the presence of mineral components, such as calcium carbonate, and at around 2θ=40°, corresponding to the (220) crystal plane in the cubic structure of KCl. Raman spectroscopy for these two biochars was not specific, as the D band was not pronounced, so the I_D/I_G ratio could not be calculated, and for WS700 there was a flat line along the entire spectrum. For WS400 biochar, a peak at approximately 1592 cm⁻¹ was identified as the G-band, which corresponds to in-plane vibrations of sp²-bonded carbon atoms in the graphitic structures and can be attributed to aromatic ring systems in the biochar. The results indicate that increasing the pyrolysis temperature from 400°C to 700°C significantly enhances the porosity and specific surface area of wheat straw-derived biochar, making it more suitable for environmental applications. Structural and compositional analyses confirm that higher temperatures promote carbonization and mineral retention, which can influence biochar's adsorption properties and stability.

Keywords: Biochar, Wheat straw, Slow pyrolysis, Characterization

Acknowledgements: This research was supported by the Science Fund of the Republic of Serbia, #10810, Sustainable solutions in environmental chemistry: exploring biochar potential–EnviroChar.